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O N  M O D U L A T I O N  OF S O U N D  BY S O U N D  

v.  I. Krylovich and G. N. By r  UDC 534 (03) :534.6:536.2 

Frequency shifts of continuous acoustic waves propagating in a medium which arise due to the effect of 

external acoustic disturbances arbitrarily propagating in the same medium are analyzed. An analytical de- 

pendence of the magnitude of the acoustic shift on the angle between the wave vectors of the probing and 

external waves is obtained, A corresponding directivity pattern is calculated. 

It is known that  in real media the principle of superposition for acoustic waves is approximate  [ 1 ]. In [2 ] 

we estimated the deviation from this principle for some liquid and gaseous media. Thus ,  by sending sound or 

ultrasound waves into a medium, receiving them, and distinguishing the frequency shifts of the received oscillations, 

one can obtain information about external sources of acoustic signals. An ultrasound beam can act as an acoustic 

receiving antenna and a microphone. If the ultrasound beam is affected by an acoustic field from some s tandard  

source, then valuable information can be obtained about the nonlinear properties of the medium in which the 

measurements  are made,  because the nonlinear properties of the medium determine the deviation from the principle 

of superposition. To analyze these possibilities one should study in more detail the interaction of acoustic waves 

propagating arbi trar i ly to each other.  In [2 ], only the simplest case in which the directions of the wave vectors of 

two acoustic plane waves coincide is considered. 

Let continuous plane acoustic waves propagate in the direction of the x axis. For cer ta inty  we assume that 

the emitter is at x = 0, the receiver is at x = L, and the frequency of the emitted waves is constant  and  equal to f0 

(probing radiation).  Simultaneously, plane acoustic waves with frequency F (external radiation) propagate in the 

medium; their direction makes an angle a with the x axis. 

The  solution method,  as in [2 ], is as follows. First we find the law of probing wave motion in a medium 

disturbed by an external  acoustic field. It is easily shown that this law is a solution of the differential equation 

dx ( x c o s a  ) 
d--~- = v0 + Av0 sin f2 r v0 + t (1) 

under  the corresponding initial condition. Without loss of generality, the initial condition can be taken in the form 

xl =o = o. (2) 

Here  f~ = 2nF, 9' = Qt is the initial phase of external  acoustic field oscillations at the point x = 0 at the moment 

of transmission of probing wave radiation (i.e., at r -- 0). 

The  solution of Eq. (1) which satisfies condition (2) has the form 

arctan - arctan ( / ~ Q x c o s ~ + t  + t a n ~ t +  1 
tan y T Vo 
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f~r =~o x/~(l-c~ :z-A~cos 2a, a O < a < 2 , ' r - a  0 O) 

and 
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I v0 (I - COS a) tan ~ (r 

v0(l cos a)  tan ~ (r 

\ 

xcosc t  + t /  - A v  o 
Vo ) 

x c o s a  + t /  - A v  o 
v0 ) 

cos a - q A~ cos z a - ~ ( I  - cos a )  2 

cos a + X / A ~  cos 2 a - ~ (1 - cos a)  :z 

- I n  

v 0(1 - c o s a )  t a n - ~ - t - A v  0 c o s a -  X / A ~ c o s  2 a - ~ ( 1  - c o s a )  2 

f~ 
v 0 (1 - cos a)  tan ~- t -  Av o c o s a  + ~ / A ~ c o s  2 a  - ~ (1 - c o s a )  z 

= -Q V a ~ o  c o s  2 ,~ - ~o (1 - c o s  ,~)2 3 ,  - '~o -< a <_ a o , ( 4 )  
Vo 

where 

v r ( V  
o ( l  - c o s a )  + a v o  cos ,~  ] vo 

- , a o = a r c c o s  . ( 5 )  
A = ~0(1 c o s a )  A v o ' ~ ' a  ) v 0 + A v  0 

If in expressions (3) or (4) it is assumed that x = L, then from them one can find the time r = rd in which 
a probing wave reaches the receiver, i.e., the delay time. At constant L, vo, Avo, and Q rd will be the function of 
So - g/t, i.e., t can be considered as a current time related to the emitter. 

For convenience instead of rd we introduce the quantity rd = L / v o  + Ar d. Then we have instead of (3) and 
(4) 

A Q L (1 - COS a)  i ] t a n ~ - ( A r d +  v0 + t )  - 

arctan - arctan 
tan -~- t 1 

Q 
tan ~- t + 1 

)~ _ L + Ar d ~ X / ~ ( 1  - c o s a )  z - A ~ c o s 2 a  = 0 ,  a 0 < a  < 2 . T r - a  0; (6) 

I n  

Vo (1 - cos a)  tan ~-- (Ard + 
L ( I  - c o s a )  + 

v0 
t) - Av o cos a - q A ~  o cos z a - ~o (1 - cos  a) z 

v 0 ( 1 - c o s a )  t a n ~  r d +  + t  - A v  o c o s a + x / A ~ c o s z a - ~ ( 1  - c o s a )  2 
v0 

- I n  

v o (1 - c o s a )  t a n - ~  t -  Av ocos  a - ~ / A ~  cos 2 a  - ~ (1 - cos a)  z 

f~ 
v 0 (1 - cos a)  tan -~- t - Av 0 cos a + x / A ~  cos z a - ~ (1 - cos a )  2 

L + A~a  ~ 0  # AvE o c o s  a -- ~0 (1 -- c o s  ,~)Z = 0 ,  -- ~ 0  ~ ~ ----- ~ 0 "  (7) 
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We find the shift of the frequency f of the received probing waves relative to the f requency fo of the emitted 

waves, i.e., Af -. f - fo .  It can be shown that for Af the relation 

dr d d (Ara) (8) 
Af (t) = - fo at =- fo at 

is valid with sufficient accuracy (the error  is of the order  of A//fo compared to unity).  

The  value of d(Ard/dt) can be found as the derivative of the implicit function which is the lef t -hand side 

of (6) or (7). After differentiation we obtain 

s i n [ Q ( A r a + L ( 1 - c ~  sin t~t 
Av0 v~ (9) 

A / ( t ,  a )  = / o  - -  

Avo I (  )1t( Avo v~ + - -  sin f~ AT d + + t 1 - cos a -- cos a sin Q 
v0 Vo Vo 

This formula turns out to be valid for any values of a.  The  second term in the braces of the denominator  can be 

ignored, since Avo/vo << 1 (the term in the brackets cannot be ignored, because the entire expression could vanish). 

Thus,  

a f  (r, a )  = f0 - -  
Av o 

sin [Q ( A r d + L ( 1 - - c ~  - - s i n f ~ r  

1 - cos a - - - c o s  a sin f~r 

(10) 

In the latter expression t is replaced by the previously adopted r for the current  time. As is seen from (10), 

Af(r, a )  is a periodic function of time with period 2.~/f~ = 1IF. This function attains its greatest  value at a = 0, 

which for r ~ 0 is equal to 

~AvoL Av o L 
Alma x (0) = / 0  2 _ 2~/0 _ _  _ (1 1) 

v o v o 2 

We denote  the peak (maximum in absolute value) value of Af(r, a)  as calculated by (1) with allowance for 

equations (6) and (7) as A.fmax(a ). To obtain the directivity pattern of Afmax(a) we performed calculations on a 

computer.  Here  the time interval Ar = I /F  was divided to n = 20 equal parts. At the boundaries of these parts the 

value of A~" d was found by a numerical solution of equation (6) or (7), depending on the chosen value of the angle 

a.  The  angle a was split into 10-degree intervals from 0 to :t. The  frequency of probing ul t rasound waves was f0 = 

106 Hz, the studied medium was water, and v 0 = 1500 m/sec.  According to the data of [3 ], for water  the velocity 

of ultrasound propagation changes by Avo -- 1.84- 10 -6  m/sec  as pressure changed by t Pa. For  the external  acoustic 

field the frequency values were F = 104 and l05 Hz, the length of the acoustic wave was L = 0.75 and L = 1.5 m; 

thus, calculations wereperformed for values of the ratio L/)t equal to 10, 50, and 100. The  calculation by formula 

(11) for these values of L/2, under  the condition that the sound pressure produced by the acoustic field is l Pa, 

gives values of the maximum shift of the frequency of probing waves Afmax(0) equal to 7 .7 .10 -2,  3 .85.10 -1,  and 

7.7.10 -1 Hz, respectively, which is easily measured by modern devices. The calculated data for o ther  values of 

the angle are presented in Table 1. 

The  overall character  of the dependence Afmax(a) is similar for different values of the ratio L/;t. The  

directivity pattern is strongly extended toward the polar axis a = 0; the moreso, the greater  the value of L/2. For 

example, for L/;t = 100, A.fmax(a) is by two orders of magnitude smaller at a = 45 ~ than at a -- 0. Table  2 presents 

the values of angles a at which for the chosen values of L/2 Afmax(a) decreases by factors of 2, 3, and l0 compared 

to Afmax(0). These  data show that to solve problems of direction finding for an external  source of acoustic signals, 

one should select the maximum possible base L for the probing beam. 
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TABLE 1. Angular  Distribution of Relative Peak Value of Frequency Shift Afmax(a)/Afmax(0) 
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F =  104 Hz, L / 2  = I0 

1 

8.61.10 - l  

4 .24 .10 -1  

2.19.10 - l  

1.26.10 - j  

6 .41.10 -2  

4 .95.10 -2  

3 .58.10 - 2  

2.86.10 -2  

1.62.10 - 2  

2.71.10 -2  

2.36- 10 - 2  

1.67- 10 -2  

1.93.10 -2  

1.67.10 -2  

1.58" 10 -2  

1.62" 10 -2  

1.50.10 - 2  

9.07. l0 -3  

F =  10 ~ Hz, L/ ; t  = 50 

1 

5.12.10 - l  

4 .16 .10 -1 

1.79.10 -1 

8 .77.10 -2  

4 .30.10 -2  

2 .53.10 - 2  

1.77" 10 -2  

9.90" 10 -3  

9.45" 10 -3  

6.75" 10 - 3  

3 . 2 5 . 1 0  - 3  

5.28- 10 - 3  

2.10.10 -3  

3 .34.10 -3  

2 .83.10 -3  

2.90- 10 -3  

2 .74.10 -3  

2 .20.10 -3  

2 .99.10 -3  

1.94- 10 -3 

F =  l0  s Hz, L/,~ = 100 

6.83.10 - l  

2 .97 .10 - l  

1.17.10 -1 

7 .85.10 - 2  

5.08" 10 - 2  

2 .15.10 - 2  

1.26" 10 - 2  

8.83" 10 -3  

4.95" 10 -3  

4.73" 10 -3  

3.37" 10 -3  

1.62- 10 -3  

2.64- 10 -3  

1.05. I0  -3  

1.67.10 -3  

1.42- 10 -3  

1.45.10 -3  

1.37" l0 -3  

1.10-10 -3  

1.50" 10 -3  

9.71-10 -4  

TABLE 2. Some Geometr ic  Characteris t ics  of the Directivity Pat tern  

F, Hz 
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As is seen f rom the figure, the dependence Afmax(a ) has a number  of max ima  and minima; in what  follows 

we shall show that  their  total number  is equal to an integer from the ratio 2L/ ; t  for each quarter  of the total circle. 

The  values of angle a i that  correspond to minima and maxima of the dependence Afmax(a) can be approx imate ly  

obtained by equating to zero the derivative of the function Af(T, a )  with respect to a ,  which is expressed  by  formula  

(10) with allowance for relation (6), f rom which the expression for d ( A r d ) / d a  when a > a0 is found. If we per form 

this procedure,  we obtain ext remely  cumbersome expressions,  which are not presented here. Therefore ,  we adopt  

one more  simplification: we assume that all maxima and minima of the function Afmax(a ) OCCUr at angles ai  such 

t h a t  a i > > a  o. T h e  l a t t e r  i n e q u a l i t y  is f u l f i l l e d  fo r  t h e  a d o p t e d  v a l u e s  of  v 0 a n d  Av 0 a 0 = a r c c o s  

[ v o / ( v  o + Avo) ] = 10 -9  tad,  and the angle a ,  which corresponds to the first max imum (after the zeroth at a = 0),  
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Fig. 1. Diagram of angular  dependence  of the relative peak value of the 

frequency shift Afmax(Ct)/Afmax(O ) for L/2  = 10 in logarithmic scale. 

proceeding from geometric considerations, is of the order  of :r/2n,  where n is the integer part of the ratio L/2t. For 

example, a 1 ~ 1.6.10 -2,  for L / 2  = 100 so that aO/al = 6 .10  -8 << 1. 

With this  s imp l i f i ca t i on  it is t rue  (see r e l a t ions  ( 3 ) - ( 5 ) )  tha t  A v o c o s a < < v o ( I -  c o s a ) ,  A =  1, 

d A / d a  -- O, and one can show that the approximate relation 

d (ard)  
da = Alto tan a .  (12) 

is fulfilled with a sufficient degree of accuracy. 

Allowing for the latter relation and the adopted simplifications, af ter  differentiation we have from relation 

(10) 

s i n a  c o s k ( r , a )  f~ ~co da - s i n k ( r , a )  

d [Af (z, a)  l Av0 (13) 
da ~" fo Vo 2 

1 - c o s a  1 + - - s i n ~ . .  
v0 

where k(~, a)  -- f~(Atd + L(1 - cos a) / vo  + r).  The  error  of the latter equality (the difference from the accurate 

one) is of the order  of Avo/vo. Equating (13) to zero we obtain two equations with respect to a 

s i n a  = 0 ,  (14) 

I( )] ;0L) 
Equation (14) gives the value of the angle a = 0; Jr, which corresponds to the zeroth maximum. If we above from 

Ay(T, a)  to Admax(a), for the derivative d[A/max(a ) ] /da we obtain the same expression (13); but in this expression 

and,  correspondingly,  in (15), the quantity r becomes not an independent  variable but some function of the angle 

a. The  number of extrema of the function Admax(a ) within the range [0, ~r ] will be equal to the number  of roots of 

t ranscendental  equation (15) within the same range and to ;h . . . . . . .  her of roots of the simpler t ranscendental  

equation 

:r Jr f2Ar a (16) 
t a n ~ - k ( 1  - z ) - k ~ - =  z ' 
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where k - (2/~r)(QL/vo) = 4L/2  within the range of z = cos a variation is equal to [ -1 ,  1 ]. Allowing for the fact 

that QAr d ___ 2at, one can find, for example, graphically, that for large k the number of roots is equal to k. 

Consequently, the number of extrema of the function A/max(a) within the range of a variation of from 0 to ~r is 

equal to 4L/2t. Since the function A/max(a) is continuous, the maxima and minima should alternate; thus, within 
the range [0, :r ] it has 2L/~ maxima and the same number of minima. As a result we have L/A "lobes" of the 

directivity pattern in each quarter of the circle. In this case, as calculation shows, the function A/max(a) does not 

become zero between the "lobes"; it only takes some minimum value which differs from zero. It is seen from Eq. 

(16) that it has a singularity a ffi ~r/2 at which the derivative d [Afmax(C0 ] / d a  has a discontinuity and changes sign; 

this is a cusp of the first order for the function A/max(a). In this case the value of A/max(:r/2) does not vanish but 
has a finite value of 1.25.10 -3 Hz for the three chosen values of the ratio L/~. 

As is seen from Table 1, the depth of modulation of a I-MHz probing signal at a sound pressure of 1 Pa 

produced in water by a source of acoustic disturbances is fractions of Hertz at small angles a. Modern methods 

and engineering means make it possible to measure and register such modulation. Consequently, practical use of 
the described method in hydroacoustics and also, as was shown above, for precision studies of nonlinear properties 

of liquid media is possible in principle. Similar calculations for gaseous media show also the possibility of practical 

use of the method. Although in this case one should use lower frequencies of probing ultrasound due to strong 

attenuation in gases. 

N O T A T I O N  

x, coordinate; L, length of acoustic base;/0 and F, frequencies of probing and external acoustic waves, 

respectively; a,  angle; r and t, time; vo and Avo, velocity of propagation of ultrasound waves in undisturbed media 

and its maximum change under the effect of an external acoustic field; ~ = vo/F. 
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